Tadeáš Fryčák, Jakub Dostál a Tomáš Fürst
Před nedávnem jsme se pokoušeli shrnout různé mechanismy, které mohou vysvětlit, proč průběh počtu nakažených koronavirem vytváří podivnou sérii po sobě jdoucích vln, které nikdo neumí předpovědět. Právě teď se v České republice nacházíme v situaci, kdy nikdo neví, jestli na podzim přijde další vlna, či nikoliv.
V předchozím textu jsme psali, že se mnoho lidí domnívá, že každá vlna musí mít svoji „příčinu“, ať už vládní intervenci, příchod nové mutace nebo vyvanutí nějaké formy přirozené imunity, kterou zatím neumíme měřit. Na konci textu jsme poměrně vágně navrhovali, že samotná struktura kontaktů ve společnosti může mít za následek, že epidemie vyprodukuje sérii po sobě jdoucích vln „bez příčiny“. Smyslem tohoto příspěvku je představit konkrétní mechanismus, který k takové dynamice vede. Rozhodně netvrdíme, že tento mechanismus byl zodpovědný za vlny, které jsme v naší zemi zaznamenali. Myslíme si ale, že je užitečné vidět konkrétní příklad komplexní sítě, na které probíhá epidemie ve vlnách, aniž by se v čase nějak měnilo chování viru či lidí.
Vytvořili jsme fiktivní stát, který má 300 tisíc obyvatel. Uvnitř tohoto státu jsou tři klastry o velikosti 100 tisíc lidí. Hustota kontaktů uvnitř každého klastru je větší než hustota kontaktů mezi lidmi z různých klastrů [1]. To si můžete představit třeba tak, že děti ve školách spolu velmi intenzivně interagují, jejich rodiče v zaměstnání také, ale děti a rodiče interagují více méně jen v rodinách. Třetí klastr potom může představovat osazenstvo domovů důchodců, které spolu interaguje skrze personál, ale s dětmi a dospělými mají kontaktů velmi málo. Na takové síti jsme pustili stochastickou verzi standardního SIR modelu. Pozorovali jsme několik kvalitativně odlišných typů chování. Výjimečně se epidemie dokonce sama zastavila, ale v drtivé většině běhů vytvořila jednu, dvě nebo tři po sobě jdoucí vlny různých výšek. Níže je několik typických příkladů průběhu celkového počtu nakažených, které jsme v simulaci pozorovali.
Znovu upozorňujeme, že v průběhu simulace jsme nijak neměnili ani parametry nemoci ani intenzitu kontaktů mezi lidmi. Všechny simulace běžely na stejném typu sítě, jen jsme pokaždé na začátku simulace vylosovali z daného pravděpodobnostního rozdělení jinou realizaci matice kontaktů a nakazili vždy jeden náhodně vybraný uzel [2].
Znovu zdůrazňujeme, že se nikterak nesnažíme modelovat skutečný průběh epidemie koronaviru v České republice. Neradi bychom se ocitli v roli sdružení BISOP, jehož počítačová hra se stala záminkou k nesmyslnému jarnímu rotačnímu systému otevírání škol. Stejně jako v případě BISOPu, ani tento náš „toy model“ nijak nepracuje se skutečnými měřenými daty a nemůže tedy být podkladem k žádnému rozhodování.
Doufáme ale, že jsme přesvědčivě ilustrovali důležitý fakt, že průběh epidemie může být dosti komplexní, i když se v čase nijak nemění ani chování lidí ani chování viru samotného. Vítejte ve světě emergentních vlastností komplexních systémů.
[1] Tomuto typu modelů se říká Stochastic Block Models.
[2] Programový kód v jazyce Python a jeho detailní popis je k dispozici na požádání u autorů.